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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS

VI. FURTHER RESULTS IN THE THEORY OF TORSION,
SHEAR AND FLEXURE

By R. S. RIVLIN

Davy Faraday Laboratory of the Royal Institution

A A

(Communicated by E. K. Rideal, F.R.S.—Received 13 May 1949)

The forces necessary to produce certain simple types of deformation in a tube of incompressible,
highly elastic material, isotropic in its undeformed state, are discussed. The first type of deforma-
tion may be considered to be produced by the following three successive simpler deformations:
(i) a uniform simple extension,

(ii) a uniform inflation of the tube, in which its length remains constant, and

(iii) a uniform simple torsion, in which planes perpendicular to the axis of the tube are rotated
in their own plane through an angle proportional to their distance from one end of the tube.

Certain special cases of this deformation are considered in greater detail employing a simple
stored-energy function of the form :

: W=Ci(1,=3) +Cy(L,—3),

where C; and C, are physical constants for the material and I; and I, are the strain invariants.

The second type of deformation considered is that in which the simpler deformations (i) and (ii)
mentioned above are followed successively by simple shears about the axis of the tube and parallel
to it. The forces which must be applied are calculated for the simple form of stored-energy function
given above. ‘

Finally, the simultaneous simple flexure and uniform extension normal to the plane of flexure of
a thick sheet is discussed, and a number of the results obtained in a previous paper (Rivlin 19495)
are generalized.

OF

1. INTRODUCTION

In partI (Rivlin 1948 ) of this series of papers, the notion of an incompressible, neo-Hookean
material was introduced and the stress-strain relations, equations of motion and boundary
conditions were given for a body of such material. In part III (Rivlin 19485) the surface
tractions necessary to produce various simple types of deformation in a right-circular
cylinder and in a tube of circular cross-section of incompressible, neo-Hookean material
were calculated. In part IV (Rivlin 1948¢), the stress-strain relations, equations of motion
and boundary conditions for any incompressible material, which is isotropic in its undeformed
state and for which the stored-energy function W is a function of the two strain invariants /;
and 7,, were derived in a form suitable for the calculation of the forces necessary to produce
a specified deformation of a body of the material, without any explicit form for W being
assumed. These equations were applied to the calculation of the forces necessary to produce
simple torsion in a cylinder of the material (Rivlin 1948¢, 19494). It was found that, apart
from an arbitrary hydrostatic pressure applied over the whole surface of the cylinder,
azimuthal and normal surface tractions must be applied to the ends of the cylinder. The
distribution of these and their variation with amount of torsion depend on the precise
form of the stored-energy function. It is of interest that Poynting (1909, 1913)* carried out
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* I am indebted to Dr H. A. Daynes for drawing my attention to Poynting’s work.
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174 R. S. RIVLIN ON LARGE ELASTIC

experiments in which he measured the lengthening of a steel wire and of a rubber rod on
twisting. His theoretical discussions of the effect are, however, inadequate.

In the present paper, the theory is applied to the calculation of the forces necessary to
produce certain simple types of deformation in a uniform tube of circular cross-section.
First, the simultaneous extension, inflation and torsion of the tube is considered, without
making any specific assumptions regarding the form of the stored-energy function, other
than those implicit in the incompressibility of the material and'its isotropy in the undeformed
state. The distribution of applied surface forces necessary to produce such a deformation is
considered and the resultant torsional couple, longitudinal force and inflating pressure are
obtained. This result is specialized to the case of a cylindrical rod in §6 and, in § 7, to the
problem of a tube turned inside out, so that it is maintained in a state of deformation without
any external forces being applied. In §8, the simultaneous extension and torsion of a tube,
without any inflating pressure being applied, is discussed. For the discussions of §§7 and 8,
the simple form of stored-energy function used by Mooney (1940) and given by

W= C\(1,=3)+Cy(1,—3) (1)

is employed. Here C; and C, are physical constants characterizing the material and /; and
1, are strain invariants defined by

I, =3+2+21} and 12"/12+/12+ (1-2)

A3
where 1, 1, and A; are the principal extension ratios for the deformation.

From the point of view of the theory of small, but finite, deformations, the form (1-1) for
the stored-energy function has the special significance that it represents the most general
form which can be taken by the stored-energy function for an incompressible material,
which is isotropic in its undeformed state, if terms of higher degree than the third in the
principal extensions (A; —1,4,—1,1;—1) are neglected.

In §§9 to 13, it is considered that the tube is first stretched over a rigid cylinder and held
between this and a rigid outer coaxial cylindrical shell. It is then subjected simultaneously
to shearing deformations resulting from the movement of one rigid cylinder with respect to
the other along their common axis and the rotation of one cylinder with respect to the other
about their common axis. The surface forces which must be applied in order to produce this
deformation are calculated. In order to carry this calculation through, the case when W has
the simple form (1-1) is considered, since, unless the form of W as a function of /; and I, is
explicitly given, the displacements undergone by each point of the body cannot be calculated
from the displacements of the rigid cylinders. The edge effects resulting from the finite length
of the tube are not discussed here, but it is hoped to do so in a later paper.

In§§ 14 to 16, the problem of the simultaneous simple flexure and uniform extension normal
to the plane of flexure of a cuboid is considered. This forms an extension to the discussion
of the simple flexure of a cuboid in an earlier paper (Rivlin 19495). There the discussion
was specialized at an early stage to the case when W has the form given in (1-1). In the
present paper the discussion is carried further without specializing the form of I
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DEFORMATIONS OF ISOTROPIC MATERIALS. VI 175

2. THE BASIC FORMULAE

We consider the deformation of an incompressible material, which is isotropic in its
undeformed state, in which a point, which isinitially at (x’, y’, z’) in the rectangular Cartesian
co-ordinate system (x’,y’,z’), moves to (&',5’,{’). If W is the stored-energy function for the
material, considered as a function of the strain invariants /; and 7, then the stress components
ooyt t.,.inthe co-ordinate system (x',y’, z") are given (Rivlin 1948 ¢, equations (4:6)) by

Yy’ Ky
ow , , ow
x'x! T 2[ 1+2€ 'x’) a]l {(1+2€y’y') (1 ’+‘2€z’z’) }a] +IZ 3[ +zb7 etc. *

and byror = 2,: €y (9] —{epyr 6 — (14-26,,1) e;,z,}—ﬂ;:', etc.,
where 1426, = E2+EAHER,  etc,

, (2-2)
and y rpr T 7]x/ gx/ +77_1/ gl_r"]Zl g;/, CtC.

Equations (2:1) can be shown to be the equivalents, in Lagrangian form and for an incom-
pressible material, of those given in Eulerian form by Signorini (1943).

We shall transform these equations into a cylindrical polar co-ordinate system (r, 0, z).
Let us assume that the cylindrical polar co-ordinates of the point (x,y’,2’) are (r,0, z), and
those of the point (£,7’,{’), to which it moves in the deformation, are (p,d,{). We shall
choose the co-ordinate system (x',’,2’) so that its origin is at the point (py, %y, {,) and its
axes are in the radial, azimuthal and longitudinal directions respectively at that point. Then

&' = pcos (=) —p

7 — psin (§—9,) (2:3)
and &=~
Also, x" == 1c0s (0 —39) —pos
y =rsin (—9,) (2-4)
and z' = z—{,.
From (2-4), writing ¢’ = J—9, and ¢ = #—0, we have
J , a 1. ., d
9,7 = €08 O —¢)a—r——;sm (¥ —9) 0
d . Jd 1 , d
oy sin (¥ —¢) —3—7-—1—; cos (" —¢) 2 | (2:5)
a d
and R

J

If the point considered is at (py, %, {,) in the deformed state, so that ¢ = 0, equations

(2-5) become

and

d Jd 1. ,0
a—};zcos¢9—r+;sm¢@,

d ., 0 1 d .
a—!/7x—~sln¢9;+;COS¢99 r (26)
o _9
0z’ dz”

23-2


http://rsta.royalsocietypublishing.org/

a
J,
A

%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
JA \
o \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

176 R. S. RIVLIN ON LARGE ELASTIC
From (2-3) and (2-6), we have, for this point,

’ ’ . ’ ’
Eo = anltapm, 5y =ayl+ay,m, §, =agl+azm,

&y = apl—aym, 15, =ayl—aym, {,=agpl—aym, (27)
& = a3, Nor = s = ass,
where [=cos¢ and m=sing, (2-8)
and a; (1 =1,2,3 and j = 1,2, 3) is given by
P polt P2
la;ll =8 pdalr pd. ). (2:9)
& Llr L

From (2-7) and (2-2), we have, employing the double-suffix notation for summation over
i =1,2,3, and denoting 6., €1,r, -, €51 DY €15 €ggs - €9, We have

1426, = ayay, 1426 = ayay, 1+2¢, = aSiai}i)} (2:10)
€p- = oy, 6, = agay and 6y = a);ay.|
From (2-10), it can be shown algebraically that
(L+26p0) (1+26;.) —eg = Ay, Ay etc.,l (211)

and ¢, 19— (1+26,) 6, = Ay Ay, etc. |

The terms on the right-hand sides of equations (2-11) are similar to those on the right-hand
sides of equations (2:10), a; being replaced by 4,;, where 4;; (i =1,2,3; j =1,2,3) is the
determinant of the minor of g; in the matrix (2-9).

Denoting the stress components bergss byryrs os by DY £y s tags ey bogs t,and £ Tespectively,
we obtain, from (2-1),

N OW , , o  OW aw
typ = 2| (14-26,) G — (1426 (1424 e gy +D 7 |+ et

(212)
and tﬁé - 2[€5Z { Ezr r@ (1 + 267,’1') el;Z} M-J , €tC.
al, a1,
From (2:10) and (2-11) redpectively, we can readily obtain, in cylindrical polar co-

ordinates, the expressions for the strain invariants /; and /,, given in the previous paper
(Rivlin 1948¢, equations (3-4)). We have

I, = ayay+ayay+agas; and I, = AliA1i+A2iA2i+A3iA3i- (2-13)
The incompressibility condition (£, 7', {")[9(«',y',z") = 1 becomes, with (2:7),
deta; = 1. (2-14) -

Let R, 0,,, Z, be the components of the surface tract10n acting at the point (p,?,{) in
the deformed state, which are in the radial, azimuthal and longitudinal directions respec-
tively at (p,?, {). These are measured per unit area of the surface to which they are applied
in its deformed state. They are given in terms of the stress components ¢, , Zys, ..., 5 by

R, =t,,cos (p,v") 41,9 c08 (§,1") +1y,cos ({, V'),
0, = t,5c08 (p,V") +1ycos (9, V") + g, cos (E, ') (2-15)
and Z,, = ty, 08 (p, V") +tye cOs (3, V") + 1y cos (G, v'),
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DEFORMATIONS OF ISOTROPIC MATERIALS. VI 177

where (p,v'), (#,v) and ({,v’) are the angles of inclination of the normal v’ to the deformed
surface at the point considered to the radial, azimuthal and longitudinal directions respec-
tively at that point. ‘

In order to calculate the surface traction from equation (2-15), it is necessary to know
the position of the surface in its deformed state.

In a previous paper (Rivlin 1948¢, equations (11-2)) it has been shown that the com-
ponents of the surface traction X), Y,, Z, in a rectangular Cartesian co-ordinate system
(#',9y',2') are given by

I

[0§/ CcOos (x V +g£i,l COS (yl’ V) _I_aa_élll_ cos (Z’, V)]
+ (?I [agx, («, V)+(?g' cos (¥, V)+g§1, cos (', V):l

+‘b[0§' cos (x', V)—l—ag, cos (4, V)+0a‘§’ cos (Z/, V):l, etc. (2-16)

where (x',v), (y’,v) and (z,v) denote the inclinations of the normal v to the surface at the
point considered, in its undeformed state, to the axes x’, " and z’ respectively. X,, ¥, and Z,
are measured per unit area of the surface in its undeformed state. 7 is defined by

_ 9,7, L) )
01,/0,., 01,/0&,,, ... and ' 31,/dE,, 01,[05,,, ..
are given by ggl_'l = 28, g—g = 2£,, etc., (2-18)
, 01 , 0r
and agx, = 2[ y ag/ +€z a WA _”z’gg:_gy’m ’
(2-19)

-, 0, o7
2[ 0€/ +§x 0 AT _”xlé‘gz”“‘gz'% s etc.

Now, as before, we can choose the axes (#',¥’,2’) to coincide with the radial, azimuthal
and longitudinal directions respectively at the point (p, , {). Then, we can write

() = (0,), (>0) = (3,7) and (27) = (&), (2-20)
X, =R, Y, =0, and Z,=2Z,. (2-21)
R,, 0,and Z, are the components of the surface traction corresponding to R,,, 0,, and Z,,
respectively, but are measured per unit area of the surface to which they are applied in its
undeformed state.
From (2-18) and (2-7),
01,/0¢,, = 2(ay, l+ayym), OI,[0¢, = 2(ay,l—a, m), etc. (2-22)
From (2:7) we have
01/0,, = Ay 14-Aym, 07)08), = Ajyl—A;m, 07)0E., = A,
1[0 = Agy I+ Apym,  97)0n,, = Apyl—Ayym, 07/0y;, = Ay, (2-23)
07[0, = Ag 14 Agym, 0700, = Agyl—Agym, 07)0(,, = Ass.

14
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178 R. S. RIVLIN ON LARGE ELASTIC
" From (2-23), (2-7) and (2-19) we obtain
301,08, = l(“22A33+433A22_a2sA32'f‘132A23) +m(ag3 Agy + a3y A3 — g Ag3—as3.4y),
301,08, = U(ay; Ay + a5y Aps— gy A3 —ag34y)) —m(agy s +a53A22~—a23A32—~a32A23),
301,)0., = ay Agp+agy Ay — gy Ay — a3y Ay,
$0L,/0n;, = lazy A3+ ay3 A3y —as3 d1p— a15dss) +m(agg Ay +ayy Agg—as A3 —ay34y),
$01,/0n,, = lass Ayy +ayy Az —ag1 Ay3—ay3ds;) —m(agy i+ a3 Ay —agg Ay —ay,dss), (2-24)
$0L,)0y,, = ag Ajy+ayp Ay —asy Ay —ayy ds, |
30L,[00,, = l(ayy Ays+ g3 A1p—ay3 gy — a9y Ay3) +m(ay3 Ay + a5 A3 —ayy Ay —as54yy),
$01,/08,, = (a3 4 o1+ A3 —ay Ay —ay34yy) '~m(a12A23+a23A12~—a13A22—a22A13),
30L,(00;, = ayy Agy+a55 4y —ay5 Ay — gy Ay,

For the equilibrium of an infinitesimal element of volume situated at (p,, C) in the

deformed state of the body, we have, applying Newton’s second law in the radial, aznnuthal
and longitudinal directions at that point,

Upp 100y Oty by —lys

o T8 o =9
By 10ty Oty 2 ,
N +p 29 T ac 3 - tp&-k@ =0 (2-25)

g, 1y, By 1

where R, ®' and Z' are the components, in the radial azimuthal and longitudinal direc-
tions respectively at the point (p, %, {), of the body force acting at the point per unit volume
of the deformed body.

SIMULTANEOUS EXTENSION, INFLATION AND TORSION
OF A CYLINDRICAL TUBE

3. DEFINITION OF THE DEFORMATION

In this part of the paper, we shall consider the simultaneous extension, inflation and
torsion of a cylindrical tube of incompressible, highly elastic material, isotropic in its un-
deformed state, which has length / and external and internal radii 4; and a, respectively in
the undeformed state. In order to be precise, we shall assume that the final deformation is
produced by the following three successive deformations:

(i) a uniform simple extension of extension ratio 4;
(ii) a uniform inflation of the tube in which its length remains constant and its external
and internal radii change to g, @, and x,a, respectively;

(iii) a uniform simple torsion in which planes perpendicular to the axis of the tube are
rotated in their own plane through an angle proportional to the distance.of the plane con-
sidered from one end, the constant of proportionality being .

Let us take as reference frame a cylindrical polar co-ordinate system (r, 6, z), the origin of
which is at the centre of one end of the tube and in which the z-axis is along the axis of the tube.
Then, in the simple extension and inflation, the point initially at (7,8, z) moves to (p, 0, 1z),
where p is a function of 7 only, which will be determined later. Again, in the torsion, the point
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moves to (p,0+yAz,Az). The form of p, as a function of 7, can be determined from the in-
compressibility condition (2-14) as

App,[r = 1, (3-1)
ie. p— E (r2+1<)]§, (3-2)
where K is a constant of integration.
For compactness, we shall employ the notation
p=ypur and p,=1/Au. (3-3)
Since p = y;a; when r = q;, and p,a, when r = a,, we obtain, from (3-2),
| K = aj(M3—1) = a3 —1). (3-4)

If the point initially at (7,6, z) moves to (p,?, C) in the deformation, then p is given by
(3-2) and 9= 0+yz and (=lz (3-5)

From (3-4), it is seen that if A is positive, K may be either positive or negative, accordingly
as Au} is greater than or less than unity. If A is negative, then K is negative and y3a}> i a3.
This means that the tube is turned inside out.

If A is positive, then (r2+K) is positive for all values of 7 between a, and a,, and if A is
negative, (724 K) is negative over this range of 7.

4. THE STRESS-STRAIN RELATIONS AND EQUATIONS OF EQUILIBRIUM

‘For the deformation considered, we have, from (3-3), (3-5) and (2-9),

ay = 1/’1:“9 | a1y =0, a3 =0,
g = 0, Ay = ly Qg3 = Yhpur, (4:1)
6131 == O, d32 = 0, d33 - /1.

From (4-1) and (2-10) the components of strain ¢,,, €,
co-ordinate system (7, 8, z), are given by

1426, — A2, 14265 = p2(1+y2Ar2),
€y, = YA2ur, €, =0 and

Substituting from (4-2) in the stress-stain relations (2-12) we have

.«.s €9, in the cylindrical polar

1426 =2,
+ 2., } (+2)

’
67,0 = O.
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for = Q:T%Z%%I e (ZV”Z a1, J“” |
S AU
g =2 _*Z'ZV Sy ‘ZVHJ?W )
tyg = 2 —W"' 3?/+¢ ’ZV

and

tep =1ty =0,
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180 R. S. RIVLIN ON LARGE ELASTIC

where p is the hydrostatic pressure, which must be determined from the equations of equi-
librium. From (4-1) and (2-13) we find

1
[1 —_ ’12+ﬂ2+/12ﬂ2+¢2’12ﬂ272]
4-4)
1 1 ( :
and I,— P.{_E A2 Y2, l

The expressions for /; and I, and the stress components ¢, etc., are seen to be functions
of r only, provided that p is a function of 7 only, as it must be from considerations of symmetry. .
Substituting from (4-3) in equations (2-25), taking the body forces (R, ®’,Z') as zero, we
see that the second and third equations are automatically satisfied and the first equation
becomes

«9;;p+d___t,,,,pt _o. | (45)
We obtain
aw &‘W
212,2 2,2 1 |0V
fm, (L —weta-swmer) [ o= |57 )
1 aW -
2[/12 2(9[ — A% 23] +1, ]+K> (4+6)

where « is an integration constant.
Substituting for p, from (3-3), (4-6) becomes

peaf gl e o - D“ ]‘Z”}d

1w
2[/12 23, az L ]+ (47)
We have, employing the notation R = 72,

AW _owdl, awdl,
dR = I dr T L, ak" (4-8)

From (4-4), (3-2) and (3-3),

dI K (1
at =iz e )+
| (4:9)
' dl. K (1
and ﬂg = (/72 m/lzﬂz) Ty,
Equations (4-7), (4-8) and (49) yield

1w, LW, W
dR— 2[/12231 —Nwor TRy | T

(4-10)

LR AW YRR W 0W)
/’—_'KL?Rd R+ g R(A W T,

5. THE SURFACE TRACTIONS

Let R,, and R, denote the radial components of the surface tractions acting on the sur-
faces which are at 7 = @, and r = a, respectively in the undeformed state. These are measured
per unit area of surface in the deformed state and are taken as positive when in the direction
of the outward drawn normal to the surface considered, in its deformed state. Since, for the
deformation considered, the stress components ¢,, and £, are both zero, the azimuthal and
longitudinal components of the surface traction, on each of the curved surfaces, vanish.
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DEFORMATIONS OF ISOTROPIC MATERIALS. VI 181
Introducing into (2-15),
cos(p,v') =1 and cos(Jv') =cos (V') =0,
we have Ry=(t))rea, and Ry= (,))r=0 (5-1)

where ¢,, is given by (4:3). From (4:3) and (4-10),

1R AW LW AW .
tpp“‘“[“(fa%Rd dR+Kf (A BI+01)dR+K' (52)

IfR,; = 0, then, from (5-1) and (5-2),
k = 0. (5-3)

From (5-3) and (4-10), we obtain

oW oW 1 oW L OW W
22 .
Kf REY R+ Y %R(/l T ar ) B2 e o Ry |- (59
If we also have R, = 0, then
oW AW
fR VR — Wf (A22M+M)d3. (5:5)

LetR,, 0,, and Z, denote the components of the surface traction, over a plane end of the
tube, which are in the radial, azimuthal and longitudinal directions respectively in the
deformed state and are measured per unit area of the surface in that state. Introducing into

(2-15) the relations
cos (p,v') =cos ($,v') =0 and cos({,v) =1,

and employing the expressions (4-3) and (5-4), we obtain

oW 10w )
R, =0, @V,=2;m( Kol az)
174
and Z, = 2[( —T 2) 8 —}-(/12/12 Wrz) 1 ] \ (5-6)
YRIR QW OW
fR dR+ Y (A WJFM)dR

The resultant couple M is given by

w1 aW)d (57

—or“ 0 2 f 3(
M =2n 0, p%dp =4ny| wr (91 +/1,u(91

p2a2
and the resultant longitudinal force N is given by
“iay

N=2n Z,pdp = g/{«rfalz,,,rdr

H2a2

an[(/lz yo )?}V (/12'“2 ¢272)‘?}V rdr

AN s AN e AL P

VoL. 242. A. 24
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182 R. S. RIVLIN ON LARGE ELASTIC

Integrating the double integrals in (5-8) by parts, we obtain

m[d,dW
J [(/12 o )8] _,_(/12 2__-—¢2r2) i, ]rd K/lazf R dR+K—/1fa§R27EdR

oW oW (o aw oW
2,2 2{ 12,,2 . .
+m f (/l M+a])dk = R(/l T %al)dR. (59)

IfR,, = 0, we can employ the relation (5-5) in (5-9), yielding
@ ow
2__ 2 2_«7 2,2
f [(/1 /12 al +(/1 W)az |rar

2
+1<Af dR % RZ(A”

ow  ow

o7+ ar, )dR. (5-10)

Introducing the equations (4-8), (4:9), (3-2) and (3-3) into (5-10), we obtain

oW oW 1 (1 W, W\ OW | 20W
— 2__ 2 2 2
N=m [A(’l e )(az SR TA )+A2 (/12 ”)(al +4 az) ‘“{'( YA )]dR

(511)
In the more general case, when R,,=0, (5-9) yields, in a similar manner,

V= LL(AZ 2 )(31 + Z(ZV)

1 ow 23W _a% LW, ¢ oW
+/12 (A2 )(01 +4 dl, )(1 1‘3)+3” gfl(az—R) 2T R F1 :IdR (5:12)

Also, from (5-1), (5-2) and (5-3), we have

W oW
2,2 .
R, — KJR dR+Kf (/1 M+a])dk (5-13)

6. THE DEFORMATION OF A CYLINDRICAL ROD

For a cylindrical rod, we take a, = 0 in the formulae of the preceding section. Then, from
(3-4), K = 0and, from (3-2) and (3-3), we have Au*> = 1. We obtain, from (5-6), (4-9) and (4-8),

oW 19w
0, =2yl (01 tar, )

and z,=2[ (=) (57, +i?}?/) v 231 AR _“dR
Equations (5-7) and (5-12) yield

o GW 10w
M=4w¢f0 (0[l+mj)dr ]

B AW LW L[ (W 20W

(6:1)

(6:2)

From (4-4), | 11=Az+§ £y and 12=2/1+P+¢2r2. (6:3)
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From (6-3), % =92 and % = Y2 (6-4)
. ' iy dW o (OW  10W

With (4-8), (6-4) gives =y /1(31 1 i, ) (6-5)

Thus, equations (6-2) become
f RdeR _ 2” EW),-, f WdR:I

2
and N_-;-ﬁ( A3) ‘%dR Af RdeR e R‘ZVdR - (6:6)

=§‘7§T(1“11§)[( W)yeay—(W)peol — A[aZ(W)r o deR] 7””2] RdeR

When A = 1, i.e. the torsion is unaccompamed by extension, equations (6-2) yield

a  (OW oW
M:‘Wf (w*az)d o
67
ow oW
. 2
and N = 27r¢f (0[ +28I )a’

in agreement with the results obtained, for this case, in a previous paper (Rivlin 1949a).
If = 0, i.e. the torsion is zero, then M is, of course, zero and, from the second of equa-
tions (6-2), |

(W 10W 2
N = 2#(/1"/?)(0—[1—1-13—[2)1&:0(11. (6'8)
From the first of equations (6-2),
ow 10w o
(M[Y) =0 (31 oL )w _ab (6-9)
. . _ Nat 1
Equations (6-8) and (6-9) yield M), e~ 2(1{ )tz) (6-10)
=0

This law which relates the force necessary to produce a large simple extension, with the tor-
sional modulus for a small torsion superposed on that simple extension, is independent of the
particular form of the stored-energy function which applies to the material.

If the stored-energy function has the particular form given by

W = C\(f;—3) +Cy(1,—3), (6-11)
then, from (6-1), we have

0, — 2¢A%r(cl + %02)

(612)
and Z, — 2(12 - i) (01 + —/1102) S Y2[AC, (P —a?) —2r2C,].
Again, from (6-6) or (6:2), we have
L,
M=n(C,+ 1Co) vt
(6:13)

and N =2n(d— ) €+ C) di—dn{C+ 5 ) yaat

24-2
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184 ‘ R. S. RIVLIN ON LARGE ELASTIC

7. THE TUBE TURNED INSIDE OUT

For zero torsion, i.e. when ¢ = 0, equation (5-5), which gives the condition that the surface
tractions on both of the curved surfaces may vanish simultaneously, is

f RYVaR = 0. (7-1)
Integratlng by parts, this becomes

GW), g — (W), = f W dR. (7-2)

I, and I, are given, from (4-4), by
1 1 1
I :A"’—I—,u"’—[—/lz—#2 and 12:;72+P+)‘2 2 (7-3)
4 being given by (3-3) and (3-2).
Employing the relations (4-8) and (4-9), equation (7-1) may also be written in the form

| f[ KK R]( el )dR:o. (7-4)
| IfN = 0, we have, from (5:11),
I, M )(al * 2???/)+/121 (e~ )((ZV*” )]"R—O (75)

Equations (7-5) and (7-2) or (7-4) are the basic equations for the determination of the
extension ratio and changes in the radii of the tube when it is turned inside out and rests in
a deformed state under the action of no external forces.

If the stored-energy function W for the material is given by

W = Cy(I,~3) +Cy(L,~3), (7-6)
where C; and C, are physical constants characterizing the material, then equation (7-4)
becomes
f [RHQQ AL (7-7)
1/1
i.e. . 2]oght — ( ) 7-8
S Wk (7°8)

since K is given by (3-4).
Substituting for W from (7-6) in (7-5), we obtain

f [A( it 2) Cr+p2Cy) + per: (,121 — U ) (@ +/1202):| dR = 0. (7-9)

Introducing into (7-9) the expression for x given by (3-2) and (3-3), and carrying out the
integration, we obtain
2 1 1 K 1 1 '
I(AZ—-I) (Cl+ XC2) (@—a) +4K0210gz—j+ 5(Cr ) (,7%‘"73) —0.  (710)

- Equations (7-8) and (7-10), together with (3-4), can be used to determine 4, z; and u,,
giving the dimensional changes in the tube when it is turned inside out. Writing,

—Mf =6, —ME—=ec, and ajjaf =y, (7-11)
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equations (7-8) and (3-4) become
logEl =11 ang x(e;+1) = e+ 1. (7-12)
€2 € 6 '

Since equations (7-12) are independent of C; and C,, the ratio C,/C| does not affect the values
of ¢; and ¢,. It is readily seen that ¢, is the ratio of the volumes contained by the surface
initially at 7 = q, in its deformed and undeformed states, and ¢, is the corresponding ratio
for the surface initially at 7 = a,.

Equations (7-12) may be conveniently solved graphically by plotting ¢, against ¢, from the
first of the equations and finding the intersection of the curve so obtained with the straight
line, given by the second of the equations, of which the slope and axial intercepts depend
on y. '

Corresponding values of ¢; and ¢, in the first of equations (7-12) are obtained by con-

sidering the equation
S E w:loge%—%. (7-18)

As ¢ increases from 0 to 1, @ falls monotonically from co to 1 and, as ¢ increases from 1 to co,
@ increases monotonically from 1 to co. Thus, to any value of w greater than 1, there corre-
spond two values of e. These are corresponding values of ¢; and ¢, in the first of equations
(7-12). Thus, apart from the straight line ¢, = ¢,, the ¢, —e¢, graph consists of a curve sym-

1-0
0-9 \
0-8 \
0-7

€; — \
0-6p

0t | N

‘\
— \\
0-3L_1 ! I L4 | g
0 1 2 3 4 5 6 7
€y
Ficure 1

metrical about ¢, = ¢,, on which each value of ¢, determines uniquely a value of ¢, and con-
versely. We are only concerned with the part of the ¢, — €, curve, as shown in figure 1, for
which ¢,>¢;, since only such values can satisfy the second of equations (7-12). Itis apparent
that¢,>1 and ¢, <1. If ¢; = ¢y, it can be seen from the second of equations (7:12) that since
x>1, €, = ¢, = —1, i.e. the tube is undeformed.
With the notation of (7-11), (7-10) may be written as
1 1

2 1 1 A |
Z(Az_;{)(cﬁicz) (x—l)—~2(ez+1)CzlogE%JrP(eerl) (Cy+22C,) (E} &;):0’ (7-14)
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186 R. S. RIVLIN ON LARGE ELASTIC
which, with (7-12), yields

2(3—1) (AC,+Cy) (x—1 11
@G (g (11), (7-15)

If x is known, then ¢, and ¢, may be determined from equation (7-12), and a measurement
of A would enable us to find C,/C, from (7-15). '

8. SIMULTANEOUS TORSION AND EXTENSION OF A TUBE

Ifno force is applied to the inner curved surface of the tube and its stored-energy function
is given by (6-11), we have, from (55),

|:2 log’lil —l—1

P A(l lz):l(01+,126‘2)Jrc*l,/,m(a%_a%)= o 1)

l_‘g—/‘l

Employing the notation

2 C ¢2/12(a2—~a2)
/1/‘1 =€, /1/‘2 = 6y a% X and Cl +/1202 Yo (8 2)
(8-1) becomes (log €, — el) — (log €y— 2—) = Y (8:3)
1 2

We also have the relation (3-4), which, with the notation of (8:2), may be written
x(e;—1) =6,—1. (8-4)
For given values of y and y,, ¢; and ¢, may be found by solving (8:3) and (8-4).

s \e-s |

\ \ lX=10
1o \\H'S \ | \
TN \
N\ N
A N\ \ \\

04 x=11 A | "~ \
= N \\ \
9\~.

\ \\
]

05 06 0-7 0-8 0- 1-0

€

Ficure 2


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATIONS OF ISOTROPIC MATERIALS. VI 187

It will be assumed that ¢, and ¢, are both positive, i.e. the tube is not turned inside out. It
is seen from (8-4) that either (¢, —1) and (¢,—1) are both positive or both negative. Since,
by definition, y>1, in the former case ¢; <¢, and in the latter case ¢, >¢,.

If, now, we assume C, and C, both positive, y, is positive. It is noted that (loge—1/e) is
a monotonic increasing function of'¢, for ¢ positive. Consequently, in (8-3), ¢, >¢, and hence
(6;—1) and (¢,—1) are both negative.

For any value of y, corresponding values of ¢; and ¢, can be obtained from (8-4). These
may be substituted in (8:3), to give corresponding values of y, and y, against ¢, curves
obtained for various values of y as shown in figure 2.

SIMULTANEOUS EXTENSION, INFLATION AND SHEAR
OF A CYLINDRICAL ANNULUS

9. DEFINITION OF THE DEFORMATION

In this part of the paper, we shall consider the body described in § 3 to be subjected to the
following successive deformations:
(1) a uniform simple extension of extension ratio 4;
- (ii) a uniform inflation of the tube in which its length remains constant and its external
and internal radii change to g, a; and g, a, respectively;
(iii) a simple shear of the tube about its axis, in which each point moves about the axis
through an angle ¢ which is dependent only on the radial position of the point;
(iv) asimple shear of the tube, in which each point moves parallel to the axis of the tube
through a distance w which depends only on the radial position of the point.
In the deformations (i) and (ii), a point initially at (, 6, z) moves to (p, , Az), where p is
a function of 7 only. In the deformation (iii), this point moves to (p, § +¢, 1z) and in the defor-
mation (iv) to (p, 4@, 1z+w), where ¢ and w are functions of r only. Thus the co-ordinates
(0,3, (), in the deformed state, of a point, which in the undeformed state is at (r, 6, z), may

be written as
p=ur=[(P+K)AP}, d=0+¢ and {=A2Az+uw, (9-1)

where, as in § 3, K =a}(3—1) = a3(Au—1). (9-2)

10. THE STRESS-STRAIN RELATIONS AND EQUATIONS OF EQUILIBRIUM
Since, in the deformation considered, a point which is initially at (, 8, z) moves to (p, 9, {),
given by (9-1), we have, from (2-9),
ay = 1/pA, a;,=0, a;3=0,
gy = U1y,  Ggg =f, Q3 =0, (10-1)
a3 =W,, A3y =0, a33=2»A

Employing (10-1) in (2-10), we obtain

1+26;, = 1/pPA% 1+ 265, = p?(1+1242), 1+26.;Z=A2+w3,}

, , , 10-2
€z = /ﬂ‘¢r Wy €zr = wr/ﬂ/la €rp = 7’¢,/ A. ( )
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188 R. S. RIVLIN ON LARGE ELASTIC
With (10-2), the stress-strain relations (2-12) yield
C 1 W ow )
top =2 _ﬁéa_l—_’uz(iz 2+/12r2¢2) 1, +IZ o1, S
ow 10w oW
Loy = 2 1P (L+7247) - al, 2 (?I +IZ +b
B 190w 3W
— 2 42 il
téé“QL(’I —{_wr) 01 29I, "I'Iza[z ' 103
oW (10-3)
tyy = 2urg, e o
: 10W = oW
’éﬂ:2A( a7, )
ST (OW W
and 2" (a1 +0%,) J
From (10-1) and (2-13), we see that -
L= g2 N g g
# (10-4)

and I,— ;1#/112 AR PN R g

Since typs L99s -+ Lp9s Given by equation (10-3), depend only on 7, i.e. on p, the equations
of equilibrium (2-25), in the absence of body forces, become

ai/’/_’ t_—_f”” ~lo =0 \
dp p ’
at
a;u lp =0 (10-5)
' at
and f”+ t, = 0.
o )
The second and third equations yield directly
tpp® =24/ and t,,p=2B[1% (10-6)

where 4 and B are constants of integration and p is given by (9-1). Equations (10-6) and
(10-3) yield

4= Y
= W oW
(’2+K)<al +a2 al)
(10-7)
Br
and w, 14
/172_«+( 2y gy W al

It is seen, from (10-4), that /; and 7, depend on ¢, and w,, and since, in general, dW/dI,
and dW/d1, are functions of I; and J,, equations (10-7) are non-linear differential equations
for the determination of ¢ and w as functions of r. If, however, W is given by

W = Cy(f;—3) +Cy(I,—3), (10-8)
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where C; and C, are constants, then equations (10-7) become
A Br
P, = TPTK) (C+7C;) and w’:/erCl+(r2+K) o (10-9)
Integrating equations (10-9), we obtain
___4 Koy g
P (RO ARLIEAN
and B 1ogGtrCI” | (10-10)

T 2000, +GC) B (C+mC) &

Now, let us suppose that w = 0 and ¢ = 0, when 7 = a,, and that w = w, and ¢ = ¢,, when
r = a;. Employing these conditions to evaluate the integration constants 4, B, 4" and B’,
we obtain

4 = §,K(Cy+2C,) log!
1

. (C+pCy) af (10-11)
and B = 2uw,(AC, +C,) log (C,18C,) &
and 4" =B =0.
From (10-11) and (10-10)
— g log™ — wlog (14 Ca) 10-12
) ¢Ologﬂ and w = w, Og(Cl-i-/t%Cz) Pl (10-12)
, to o [(CLHMC) a .
where P = ¢0/logﬂ1 and w; = w, / (CHEC) @ (10-13)
Substituting from (10-11) and (10-13) in (10-9), we obtain
_ go K _ 2(C1A+C,) wy .
P, = W and w, = A(C,172Cy) (10-14)

The first of equations (10-5) yields, with (10-3) and (10-8),

% p[(‘u g — 2/12)((,1—;—/120)-1-/41020] 2d|:2/12 1+( +/112)C:|, (10-15)

where ¢, and w, are, of course, given by (10-14). This yields

p fﬂﬂzr[(ﬂ + 1P — 2/12) (Cy "‘/120)4“/‘27’”20]‘1" 2[ 2/120 +( 2+/12) 02] (10-16)

Introducing into (10-16) the expressions (10-14) for ¢, and w, and carrying out the
integration, we obtain

p =G0y [ (2togu— o) o (21ogact 11

40 C,1+C,

I 2
e T e 2 Ot (e ]+ 101

where « is an integration constant.

Vor. 242. A. 25
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190 R. S. RIVLIN ON LARGE ELASTIC

'11. THE SURFACE TRACTIONS

Let R}, 01, Z] denote the components of the surface traction acting on the outer curved
surface of the body, at 7 = ¢, in the undeformed state, which are radial, azimuthal and
longitudinal respectively in the deformed state of the body and are measured per unit area
of the deformed surface. Let R;, 05, Z; denote the components of the surface traction acting
on the inner curved surface of the body at 7 = 4, in the undeformed state, and defined in an
analogous manner. Then, from (2-15),

R; = (tpp)r=a13 @; = (t/n?)r:al and Z; = (tgp) (11.1>
and Ry = (typ)rmay  O2=(fp9)m0, and Zj= () (11-2)
Employing the relations (10-14) and (10-8) in (10-3) and the resulting expressions for

r=ay?

r=as*

bops bpy and fy, in (11-1), we obtain
, 2
By = pplCrt () Gl +p,
, 2¢,K
0, 21—2/2%5%(Cl+/1202) \ | | (11-3)
i 7 = (GG
pyay

where p, is given, from (10-17), by writing 4 = ¢, and r = a,. R, ©,and Z,are given by expres-
sions similar to (11-3), #, and a,; being replaced by g, and a,.

Again, let R), 0, and Z; denote the components of the surface traction, acting on the
initially plane ends of the body, which are radial, azimuthal and longitudinal respectively
in the deformed state of the body and are measured per unit area of the surface in its un-
deformed state. These can be calculated from equations (2:16) and (2-18) to (2-24) by intro-
ducing into them the expressions (10-1) and

cos (p,v) =cos (#,) =0 and cos({v) =+1. (11-4)
We thus obtain R, = —uw, (; Cy+ ,up) ,
| 0, =—2uwl,w,C, (11-5)
, 1
and Z! = 2)C, +21 ( e +ﬂ2r2¢3) CZ+§,

where p is given by (10-17) and ¢, and w, by (10-14).

12. THE APPLIED FORCES

The forces which must be applied to the curved surfaces of the tube are:

(i) normalsurface tractions R, and R,, per unitlength of tube measured in its undeformed
state, acting respectively on the surfaces which are initially at r = a;, and r = a,, in the
directions of the outward drawn normals to these surfaces;

(ii) an axial couple of magnitude M per unit length of the undeformed tube, acting on
each curved surface;

(iii) a longitudinal force L, per unit length of the undeformed tube, acting on each
curved surface. '
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These are given, from (11-3), by

2
Ry = 2may [ [+ (4412) G+ i
2
Ry = 210, {12 [+ (15-+12) G + o] (12:1)
M = 2002 a3 0, = 4m(C,+12C,) KgjjA
and L = 8wy (Cy+Cy/A).

The surface traction (11-5), which is distributed over the free ends of the annulus, should
also be applied in order to produce the deformation considered. If, in its deformed state,
the length of the tube is sufficiently great compared with its thickness (4, a; —p,a,) so that
Saint-Venant’s principle may be applied, the exact distribution, given by (11-5), of the
surface forces over the ends of the tube, is not important, provided that a statically equi-
valent system of forces is applied at or near the ends. Ifthe highly elastic material is deformed
by applying forces to rigid cylindrical shells, which are in contact with the curved surfaces
of the body and cannot move relative to them, then this statically equivalent system can
also be applied by means of these cylindrical shells and will make a contribution to the
forces acting on the rigid shells near their ends. However, their resultant effect on the force
L and couple M which must be applied to the rigid cylindrical shells is zero, since they have
equal magnitudes and opposite sign at each end of such a shell.

It should be noted that throughout the analysis the hydrostatic pressure p—and therefore
the forces R, and R,, given by (12-1)—are undetermined to the extent of an arbitrary
constant. The value of the constant cannot be determined unless the conditions actually

obtaining at the free ends are investigated in detail. Its value does not, however, affect the
values of the couple M and tangential force L given by (12-1).

13. THE CASE OF NO EXTENSION OR INFLATION

If there is no extension or inflation, then g, = g, = A = 1. From (9-2) we obtain K = 0.
In this case, the integration of equations (10-9) does not lead to (10-10). Equations (10-9)

become A B
A R A R AT 1D
Integrating these equations, we obtain
4 , B '
¢=“—2—<*CTI*_'I_—C‘2)—T2 -f‘A and w Imlogf—f—B . (13'2)

Taking w = 0 and ¢ = O whenr = a,, and w = wyand ¢ = ¢, whenr = a,, as before, we obtain

A= 2,(C,+G)) ataff(af—a)) and B —uy(C+Cy)flog’

. (13-3)
and A = $ya3/(a3—a3) and B’ = —w,log az/loga—;.
Introducing (13-3) into (13-2), we obtain
_ $od} ( 43 _ r a4 .
'¢—aff—a§ 1 7—2) and w-—wologzg/logaz. (13-4)

25-2
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192 R. S. RIVLIN ON LARGE ELASTIC
Since K = 0, we see, from (9-1), that # = 1. Introducing # = A = 1 into (10-16), we obtain
p=—[ 200+ C) +ur Gl v (13-5)
Introducing into (13-5) the expressions (13-1) for ¢, and w,, we obtain

4 2
p= _f (C,+C,)%r [(C,+Cy) A2+ C, B> 2] dr

N R
2G4 Gt (Cr+Cy)Pr

. (13-6)

where « is an integration constant.

The surface tractions on the curved surfaces are given by equations (11-1), (11-2), (10-3)
and (10-8). Those on the plane ends are given by (11-5). In all of these, we write
U=p =l =2A=1. ¢, and w, are given by (13-1) and p by (13-6). We obtain

R} =2(C,+2C,)+p,, O, =24/a3 and Z|=2B/a,, (137)

where p, is given from (13-6) by writing 7 = a,. R;, 0, and Z; are given by expressions similar
to (13-7) in which a, is substituted for q,.
The resultant forces R, R,, M and L, defined as in § 12, are given, from (13-7), by

R, =2ma,(2C,+4Cy+p,), R,=2ma,(2C,+4C,+p,), M=4md and L=4nB, (13-8)

where p; and p, are given by introducing r = @, and a, respectively into (13+6).

THE FLEXURE OF A CUBOID

14. THE DEFINITION OF THE DEFORMATION

In a previous paper (Rivlin 19496) the simple flexure of a cuboid of incompressible, iso-
tropic, highly elastic material was considered. However, the discussion was specialized at
an early stage to the case when the stored-energy function has the form (6-11). It is possible
to carry the discussion further than was done there without specifying the form of W as a
function of /; and I,. Here, the further generalization obtained by considering a uniform
extension normal to the plane of flexure to be superposed on the simple flexure is also made.

It is considered that initially the cuboid has edges of length 2a, 2b and 2¢ parallel to the
axes of a rectangular Cartesian co-ordinate system (x,y,z), and that it is deformed sym-
metrically with respect to the x-axis so that:

(i) each plane initially normal to the x-axis becomes, in the deformed state, a portion
of the curved surface of a cylinder having the z-axis as axis;
(ii) planes initially normal to the y-axis become in the deformed state planes containing
the z-axis;

(iii) the displacement parallel to the z-axis of a point initially at (x,y, z) is (1—1) z, where
A is a constant.

If we choose a cylindrical polar co-ordinate system (7, 8, z), so that

x=rcosf and y=rsind (14-1)
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and consider that the point initially at (r, d, z) moves, in the deformation, to (p,?, {), then it
can be shown in a manner similar to that employed in the previous paper (Rivlin 1949 ) that

— (24x+B)Y, $=yAd and =1z (14-2)

2 2 2 2
r2—r a\ 12 —a,r
where A="1"2 and B=-12_721

4.
4a 2a (1 3)

ry and r, (r, >r,) are the radii of the curved surfaces of the deformed body, which are initially
the planes x = q; and x = a, respectively, so that a; —a, = 2a.

15. THE STRESS-STRAIN RELATIONS AND EQUATIONS OF EQUILIBRIUM
By substituting from (14+1) and (14-2) in the equations of § 2, we obtain

bop = 2(1122%/“%22%?4‘120”/) +p,
o =2, ~ e o1, ) 0 -
oA 1)
and byy = tg, = t,9 =0,
where 1, Az +/12A2+A2 and 1, _A2+/121212+/12 (15-2)

Employing (15-1) in (2-25), we have, in the absence of body forces,

AW oW W R (aw ow
p==2 (;TaT“ZZ“aJ ""231) f (/12A2 p) o, T, ar)
Azaw p2(7W ow ,, .

where « is an integratlon constant.

16. THE SURFACE TRACTIONS

The surface tractions which must be applied to the surfaces of the body in order to produce
the deformation described by (14-2) are obtained from (15-1) and (2:15). We find that the
surface tractions are normal to the surfaces to which they are applied, in their deformed state.
We shall denote those applied to the curved surfaces p = 7, and p = r, by R} and R}, those
applied to the plane surfaces which pass through the z-axis by 6" and those applied to the
surfaces normal to the z-axis by Z’. R;, R;, ®' and Z’ are measured per unit area of the
surfaces in their deformed states. They are given by

Ri= W)y tr, Ry = (W),

p? g(aw LW
o =2(f - & )57+ al)+W+

A W p W
[— 2__

(16+1)
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IfR = Ry, wehave —  (W),_, = (W),_,, =W, (say). (16-2)

p=rz
This result can also be obtained, for the case when A = 1, by carrying out the integration
indicated in equation (4-12) of the previous paper (Rivlin 1949 4) and integrating theresulting
equation. If, further, R} = R; = 0, so that the curved surfaces are force free, we have
k =—W,.
From (15-2) and (16-1), we have

0’ =p%lz—/—l—W—]—K. | | (16-3)

Thus the resultant force F acting normally on a surface which is initially at y = 4+ is given by
F— mf"@'dp — QCAfrl(p%V—I-W+K)dp
- 26/1[,0(W—]—K):|r1. (16:4)

If the curved surfaces are force free so that (16-2) is satisfied and x = — W}, we have, from
(16-4), I' = 0; i.e. the forces acting on each of the surfaces initially at y = 4- are statically
equivalent to a couple, as is evident from considerations of symmetry. The couple M acting
on each of the surfaces is given, with x = — W}, by

M = Qc/ljn,o@’a’p = 2c/lfrl,0 (p%/—l— Ww— W(')) dp

:cl[(r%—rg)%—erldep]. (16:5)

r2

Since W is a function of 7, and 1,, it is seen, from (15-2), that the relation (16-2) is satisfied if
A=yl (16+6)

Together with (14-3), this completes the definition of the deformation (14-2), provided that
the radius of one of the curved surfaces is given.

It can readily be shown, in the case when A = 1, that the value of 42 given by (16-6) is
the only one which satisfies the relation (16-2). In this case, we have from (15-2) that

42 p?
Il‘_‘Iz:—z'l‘Zz’*‘l = I (say). (16-7)

p
Then, in (16-2), W is a function of , and provided that it is a monotonic function, it follows
from (1 6’2) that (I)pz,.l — (I)p=,2, (16'8)

which in turn yields 42 = 7, 7,.

It can be shown that W is a monotonic increasing function of /, when I, = I, = I, by con-
sidering the simple shear of a thin sheet of the material by forces applied to the major surfaces
of the sheet. For a shear of amount K, the tangential surface traction 7, measured per unit
area, is given (Rivlin 1948¢, § 12) by

aw aw), (169)

where I, = I, =3+ K% = [ (say). (16-10)
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Normal surface tractions must also be applied to the major surfaces, and surface tractions
must be applied to the edge surfaces. By considering the dimensions of the major surfaces
to be large compared with the thickness of the sheet, the forces on the edge surfaces may
be neglected in comparison with those applied to the major surfaces. In a small increase in
the amount of shear from the equilibrium value K, the normal surface tractions do no work,
and since the work done by the externally applied forces must be positive, 7' must be positive.
Thus, from (16-9), we have (dW/dl,+dW[dl,) >0. From (16-10) we see that

ow _ow ow_
71—=71:+~372->0, (16-11)
so that, if I; = I, = I, W is a monotonic increasing function of /.

Returning now to the more general case when A is not necessarily unity, we see that in the
uniform extension the dimension which is initially 25 becomes 256/A%. If A2 is given by (16-6),
the line which is not changed in length in the flexure has in the final state of deformation
a radius 7, given by ro= ()t (16-12)
as was shown in the previous paper (Rivlin 19495) for the case when A = 1 and W is given
by (6-11).

This work forms part of a programme of fundamental research undertaken by the Board
of the British Rubber Producers’ Research Association and was carried out at the Davy
Faraday Laboratory of the Royal Institution. My thanks are due to Mr D. W. Saunders
for carrying out the calculations of figures 1 and 2.
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